TCPLS: Closely Integrating TCP and TLS

Florentin Rochet, Emery Assogba, Olivier Bonaventure

UCLouvain, Belgium

Avec le soutien de
la

[] UCLouvain £
@ ’q)
\“4

W\‘\)

Wallonie

Motivations

o Towards cross-layer TLS/TCP?

Motivations

e Towards cross-layer TLS/TCP?
= The world changes! TCP without TLS over untrusted networks becomes unrealistic

1999 2006 2008 2016 2018
TLS 1.0 TLS 1.1 Let's Encrypt TLS 1.3

TLS 1.2 DV Cert

Motivations

e Towards cross-layer TLS/TCP?
= The world changes! TCP without TLS over untrusted networks becomes unrealistic

1999 2006 2008 2016 2018
TLS 1.0 TLS 1.1 Let's Encrypt TLS 1.3

TLS 1.2 DV Cert

= Maybe we can benefit from merging the stack?

Motivations

e Towards cross-layer TLS/TCP?
= The world changes! TCP without TLS over untrusted networks becomes unrealistic

1999 2006 2008 2016 2018
TLS 1.0 TLS 1.1 Let's Encrypt TLS 1.3

TLS 1.2 DV Cert

= Maybe we can benefit from merging the stack?
= TCP needs a boost to compete with QUIC in the future

o Improving on Header space issue; middlebox interferences

Motivations

e Towards cross-layer TLS/TCP?
= The world changes! TCP without TLS over untrusted networks becomes unrealistic

1999 2006 2008 2016 2018
TLS 1.0 TLS 1.1 Let's Encrypt TLS 1.3

TLS 1.2 DV Cert
= Maybe we can benefit from merging the stack?

= TCP needs a boost to compete with QUIC in the future

o Improving on Header space issue; middlebox interferences
= Towards more application tuning

Motivations

e Towards cross-layer TLS/TCP?
= The world changes! TCP without TLS over untrusted networks becomes unrealistic

1999 2006 2008 2016 2018
TLS 1.0 TLS 1.1 Let's Encrypt TLS 1.3

TLS 1.2 DV Cert

= Maybe we can benefit from merging the stack?
= TCP needs a boost to compete with QUIC in the future

o Improving on Header space issue; middlebox interferences
= Towards more application tuning

o Lack of complex transport features exposed to the application

How?

» TCPLS's Secure Control Channel

o We aim at a synergy with recent efforts in the linux kernel for more eBPF in TCP
o TCPLS messages are indistinguishable from TLS 1.3 APPDATA messages

5 L=

APP

D :

TCPLS TCPLS |
TCPTZTLS - =+ Indisting. == TCP. = TLS
- | . |
"IP

']]
: 1P i
i TCPLS Control I

TCPLS APPDATA

How?

« Major improvement of TCP's extensibility and deployability
= TCPLS's Secure Control Channel

o We aim at a synergy with recent efforts in the linux kernel for more eBPF in TCP
o TCPLS messages are indistinguishable from TLS 1.3 APPDATA messages

) L=

APP

D :

TCPLS TCPLS |
TCPTZTLS - =+ Indisting. == TCP. = TLS
- | . |
"IP

']]
: 1P i
i TCPLS Control I

TCPLS APPDATA

How?

« API to export complex transport features: composable basic blocks
» Multihoming, multipathing, QUIC-like streams, O-RTT, Happy Eyeball, TCP options, eBPF
injection, ...
» E.g., notion of path, notion of streams: implication of composing streams with paths

How?

« API to export complex transport features: composable basic blocks
» Multihoming, multipathing, QUIC-like streams, O-RTT, Happy Eyeball, TCP options, eBPF
injection, ...
» E.g., notion of path, notion of streams: implication of composing streams with paths

« Showing the similarities and the nuanced differences between QUIC and TCPLS

TCPLS Secure Channel

« Goal: Provides an encrypted and authenticated channel to negotiate TCP/IP extensions

Type

Version Length

TCP Option ADD_ADDR

al 1:90d5:be:11e5

META

TType

} Header

> Payload

_ Server
Client v4 v6

CHT >
Cookie, ConnlID|

TCPLS Secure Channel

« Goal: Provides an encrypted and authenticated channel to negotiate TCP/IP extensions

Type

Version Length

TCP Option ADD_ADDR

al1:90d5:be:11e5

META

TType

= Use TLS 1.3's protocol extensibility design
o The "visible" type (Type) is APPDATA

} Header

» Payload

_ Server
Client V4 V6

CH+ >
Cookie, ConnlID|

o The true type (TType) is located at the end of the payload

TCPLS API

o Goal: Export complex transport level features
to the applications

= "Export" means that applications make
desicions about the transport features

= What features should be exported, what
should not?

TCPLS API

o Goal: Export complex transport level features
to the applications

= "Export" means that applications make
desicions about the transport features
= What features should be exported, what
should not?
e Implementation advancement

= Early results on: QUIC-like O-RTT,
multipath, QUIC-like streams, TCP options
securely exchanged, eBPF injection
(Congestion Control), Connection
Migration.

= Ongoing work on: Failover, better
multipath control, API

TCPLS API

Sender Receiver

o Goal: Export complex transport level features
to the applications

tepls_new () listen()

= "Export" means that applications make tepls_add_va(adds, primary)
desicions about the transport features “tepls_add_v6(addr6)

= What features should be exported, what
should not?

e Implementation advancement

= Early results on: QUIC-like O-RTT,
multipath, QUIC-like streams, TCP options
securely exchanged, eBPF injection
(Congestion Control), Connection
Migration.

= Ongoing work on: Failover, better
multipath control, API

S 2

Figure 3: API Workflow example. * means optional call, []
means optional call flow, and { } means encrypted.

TCPLS API

Sender Receiver
» Goal: Export complex transport level features sl e stend
. . CplS _new
to the applications o s
= "Export" means that applications make tepls_add_v4(addr, primary)
desicions about the transport features “tepls_add_vé(addre)
= What features should be exported, what , | .
5 [if (tcpls_connect(addr, NULL)<0)
ShOUId n.Ot- tepls_connect(addr6, timeout)*]
« Implementation advancement — TCP Handshake accept()
= Early results on: QUIC-like O-RTT, s Vf“m) tepls_new()
multipath, QUIC-like streams, TCP options \ tepls_accept)

securely exchanged, eBPF injection
(Congestion Control), Connection
Migration.

= Ongoing work on: Failover, better
multipath control, API

v v

Figure 3: API Workflow example. " means optional call, []
means optional call flow, and { } means encrypted.

TCPLS API

Sender Receiver
o Goal: Export complex transport level features _
. . tepls_new() listen()
to the applications
= "Export" means that applications make tepls_add_v4(addr, primary)
desicions about the transport features “tepls_add_v6(addro)
= What features should be exported, what , |)
5 [if (tcpls_connect(addr, NULL)<0)
ShOUId n.Ot- tepls_connect(addr6, timeout)*]
« Implementation advancement — TCP Handshake accept()
= Early results on: QUIC-like O-RTT, s Vf“m) tepls_new()
multipath, QUIC-like streams, TCP options \ tepls_accept)
securely exchanged, eBPF injection tepls_handshake() tepls_handshake()
(Congestion Control), Connection i TCPLS Handshake —
Migl’aﬁon. CB events CB eve@
= Ongoing work on: Failover, better .
multipath control, API

Figure 3: API Workflow example. " means optional call, []
means optional call flow, and { } means encrypted.

TCPLS API

Sender Receiver
o Goal: Export complex transport level features ,)
. . tepls_new() listen()
to the applications
= "Export" means that applications make tepls_add_v4(addr, primary)
desicions about the transport features *tcpls_add_v6(addr6) |
= What featu?res should be exported, what Lif (topls__conmoct(addr, NULL)<0)
should nOt ! tepls_connect(addr6, timeout)]
e Implementation advancement — TCP Handshake — accept()
= Early results on: QUIC-like O-RTT, cB e;;s teplsnew()
multipath, QUIC-like streams, TCP options \ fopls_acceptl)
secu rely exchanged’ eBPF injection tcpls_handshake() tepls_handshake()
(Congestion Control), Connection 1 TCPLS Handshake
Migration. CB e® CB e@

" Ongqlng work on: Failover, better tepls_handshake(addrd)
multipath control, API #tcpls_ send()
*tepls_stream_new()
*tepls_streams_attach()
*tepls_send_tcpoption()] (TCPLS Data)
{APPDATA }

l tepls_receive()

-

Figure 3: API Workflow example. * means optional call,
[] means optional call flow, and { } means encrypted

Example: App-level Con Migration

1 tcpls_handshake_properties_t prop = {NULL};
2 prop.client.mpjoin = 1;

3 prop.client.zero_rtt = 1;

4 prop.client.dest = dest_addr;

6 ret = tcpls_handshake(tcpls, &prop);
7 if ('ret) {

tcpls_stream_new(tcpls, NULL, dest_addr);
tcpls_streams_attach(tcpls, 0, 1);

tcpls_stream_close(tcpls, streamid_initial, 1);

Example: App-level Con Migration

ret = tcpls_handshake(tcpls, &prop);

tcpls_stream_new(tcpls, NULL, dest_addr);
tcpls_streams_attach(tcpls, 0, 1);

tcpls_stream_close(tcpls, streamid_initial, 1);

e Download of a 60MB file over a virtual
network with two 30mbps links

o Multipath mode activated during the
migration

Bandwidth (KiB/s)

Application-level TCPLS connection migration

3500 +

3000 4

2500 4

2000 +

1500 4

1000 -

500 ~

— va
— V6

0.0

T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (s)

Research Agenda

o Applicability of TCPLS's ideas
= A more secure MPTCP?

o MPTCP ADD_ADDR and RM_ADDR inside the TCPLS secure channel + new setsockopt
o We can drop the in clear symmetric key exchange and the truncated HMAC
o Significant but highly benefical redesign of MPTCP

Client Server
Wifi SYN + MP_CAPABLE(Clear Key A)

L7 | SYNJACK + MP_CAPABLE(Clear Key BT
;CK + MP_CAPABLE(A, B)+ADD_ADDRF
SYN + MP_JOIN(token_C, R_C)
. SYN/ACK + MP_JOIN(HMAC_S, R_S)
ACK + MP_JOIN(HMAC_C) _

Research Agenda
o Applicability of TCPLS's ideas
= Helpful for detecting Middleboxes messing with TCP?
o Send options in TCP, send them also in TCPLS's control channel, and compare

=) LS

APP
TCPLS TCPLS
TCP,._TLS TCP "~ TLS
z 1
- 1
i IP i IP

IP header

TCP Header
‘](jnd:mrl_ength-# User Timeout

Type | Version | Length } TLS Header

Option Type ‘ User Timeout lTType }Pa_\-'load

Research Agenda
Applicability of TCPLS's ideas
= Pluginizing TCPLS?
o Similarly to PQUIC and xBGP; advancing towards pluginized protocols -- e.g.:

o Deploying cutting-edge research in AEAD ciphers through plugins!
o Letting the sender send and set the multipath scheduler to the receiver
o Configuring the peer's TCP stack -- in line with current efforts in the kernel

= LS

APP
B eBPF
TCPLS TCPLS
TCP.._TLS TCP '~ TLS
E 1
. 1
i 1P i IP
i. . .D-- _____________________________ I
onazmnarn ‘ mm—
Option Type
WeBPF -
TType

Research Agenda

o Applicability of TCPLS's ideas
= Thinking about the efficiency of the cross-layer approach?
o Performance gain at the cost of design complexity. e.g.:

o TCPLS can have a zero-copy code path on the receiver if the size of the TLS records
matches the sender window (i.e., no record fragmentation)

Research Agenda

o Applicability of TCPLS's ideas
= Thinking about the efficiency of the cross-layer approach?
o Performance gain at the cost of design complexity. e.g.:

o TCPLS can have a zero-copy code path on the receiver if the size of the TLS records
matches the sender window (i.e., no record fragmentation)
= Much more :-)

Research Agenda

« Applicability of TCPLS's ideas
= Thinking about the efficiency of the cross-layer approach?
o Performance gain at the cost of design complexity. e.g.:

o TCPLS can have a zero-copy code path on the receiver if the size of the TLS records
matches the sender window (i.e., no record fragmentation)
= Much more :-)

https:/github.com/pluginized-protocols/picotcpls/
https:/pluginized-protocols.org/

@fro’chet

