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e Towards cross-layer TLS/TCP?
= The world changes! TCP without TLS over untrusted networks becomes unrealistic
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TLS 1.2 DV Cert

= Maybe we can benefit from merging the stack?
= TCP needs a boost to compete with QUIC in the future

o Improving on Header space issue; middlebox interferences
= Towards more application tuning

o Lack of complex transport features exposed to the application



How?

» TCPLS's Secure Control Channel

o We aim at a synergy with recent efforts in the linux kernel for more eBPF in TCP
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How?

« Major improvement of TCP's extensibility and deployability
= TCPLS's Secure Control Channel

o We aim at a synergy with recent efforts in the linux kernel for more eBPF in TCP
o TCPLS messages are indistinguishable from TLS 1.3 APPDATA messages
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How?

« API to export complex transport features: composable basic blocks
» Multihoming, multipathing, QUIC-like streams, O-RTT, Happy Eyeball, TCP options, eBPF
injection, ...
» E.g., notion of path, notion of streams: implication of composing streams with paths




How?

« API to export complex transport features: composable basic blocks
» Multihoming, multipathing, QUIC-like streams, O-RTT, Happy Eyeball, TCP options, eBPF
injection, ...
» E.g., notion of path, notion of streams: implication of composing streams with paths

« Showing the similarities and the nuanced differences between QUIC and TCPLS
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TCPLS Secure Channel

« Goal: Provides an encrypted and authenticated channel to negotiate TCP/IP extensions

Type

Version Length

TCP Option ADD_ADDR

al1:90d5:be:11e5

META

TType

= Use TLS 1.3's protocol extensibility design
o The "visible" type (Type) is APPDATA
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o The true type (TType) is located at the end of the payload
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Example: App-level Con Migration

1 tcpls_handshake_properties_t prop = {NULL};
2 prop.client.mpjoin = 1;

3 prop.client.zero_rtt = 1;

4 prop.client.dest = dest_addr;

6 ret = tcpls_handshake(tcpls, &prop);
7 if ('ret) {

tcpls_stream_new(tcpls, NULL, dest_addr);
tcpls_streams_attach(tcpls, 0, 1);

tcpls_stream_close(tcpls, streamid_initial, 1);




Example: App-level Con Migration

ret = tcpls_handshake(tcpls, &prop);

tcpls_stream_new(tcpls, NULL, dest_addr);
tcpls_streams_attach(tcpls, 0, 1);

tcpls_stream_close(tcpls, streamid_initial, 1);




e Download of a 60MB file over a virtual
network with two 30mbps links

o Multipath mode activated during the
migration
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Research Agenda

o Applicability of TCPLS's ideas
= A more secure MPTCP?

o MPTCP ADD_ADDR and RM_ADDR inside the TCPLS secure channel + new setsockopt
o We can drop the in clear symmetric key exchange and the truncated HMAC
o Significant but highly benefical redesign of MPTCP

Client Server
Wifi  SYN + MP_CAPABLE(Clear Key A)

L7 | SYNJACK + MP_CAPABLE(Clear Key BT
;CK + MP_CAPABLE(A, B)+ADD_ADDRF
SYN + MP_JOIN(token_C, R_C)
. SYN/ACK + MP_JOIN(HMAC_S, R_S)
ACK + MP_JOIN(HMAC_C) _




Research Agenda
o Applicability of TCPLS's ideas
= Helpful for detecting Middleboxes messing with TCP?
o Send options in TCP, send them also in TCPLS's control channel, and compare
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Research Agenda
Applicability of TCPLS's ideas
= Pluginizing TCPLS?
o Similarly to PQUIC and xBGP; advancing towards pluginized protocols -- e.g.:

o Deploying cutting-edge research in AEAD ciphers through plugins!
o Letting the sender send and set the multipath scheduler to the receiver
o Configuring the peer's TCP stack -- in line with current efforts in the kernel
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Research Agenda

o Applicability of TCPLS's ideas
= Thinking about the efficiency of the cross-layer approach?
o Performance gain at the cost of design complexity. e.g.:

o TCPLS can have a zero-copy code path on the receiver if the size of the TLS records
matches the sender window (i.e., no record fragmentation)
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https:/github.com/pluginized-protocols/picotcpls/
https:/pluginized-protocols.org/
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